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A surface-wave/internal-wave mode coupled model is constructed to describe 
the energy transfer from a linear surface wave field on the ocean to a linear 
internal wave field. Expressed in terms of action-angle variables the dynamic 
equations have a particularly useful form and are solved both numerically and 
in some analytic approximations. The growth time for internal waves generated 
by the resonant interaction of surface waves is calculated for an equilibrium 
spectrum of surface waves and for both the Garrett-Munk and two-layer models 
of the undersea environment. We find energy transfer rates as a function of 
undersea parameters which are much faster than those based on the constant 
Brunt-ViiisSila model used by Kenyon (1968) and which are consistent with the 
experiments of Joyce (1974). The modulation of the surface-wave spectrum by 
internal waves is also calculated, yielding a ‘mottled’ appearance of the ocean 
surface similar to that observed in photographs taken from an ERTS1 satellite 
(Ape1 et al. 19753). 

1. Introduction 
In  this paper we present a surface-wavelinternal-wave mode coupled model to 

describe the generation of internal waves by surface waves. The possible impor- 
tance of surface waves for the generation of internal waves is mentioned by 
Phillips (1966, $5.3) and models for this have been studied by Ball (1964), 
Thorpe (1966), Hasselmann (1966) and Kenyon (1968). Tank experiments to  
study the interaction of surface and internal waves have been reported by 
Lewis, Lake & KO (1974) and by Joyce (1974). 

Syntheses of observations of internal waves in the deep ocean have been made 
by Garrett & Munk (1972a, 1975), who have proposed an explicit equilibrium 
spectrum for internal waves. Suggested sources of energy to drive internal waves 
are tidal currents, atmospheric pressure and stress fluctuations, and surface 
waves (see, for example, Thorpe 1975). The relative importance of these mecha- 
nisms a t  various internal wavenumbers is not known at present. If the internal- 
wave spectrum is not in equilibrium one might anticipate that energy is fed 
into the spectrum at longer and intermediate wavelengths and cascades by 
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nonlinear interactions to the shortest internal-wave wavelengths, where it is 
dissipated by wave breaking. 

We simplify the surface-wave/internal-wave dynamics by treating both the 
surface and internal wave motions in a linear approximation. The nonlinear 
coupling is treated to the lowest non-vanishing order in 52. To simplify the 
analysis further we assume (not unrealistically) that the wavenumbers and fre- 
quencies of the surface waves studied are large compared with the wavenumbers 
and frequencies of the internal waves of interest. The resulting dynamics are 
expressed using action-angle variables, which allow a simple and efficient 
numerical integration of the equations of motion. 

For the purposes of this paper we model the ocean as follows. In  the absence 
of wave motion the surface is assumed to coincide locally with the plane z = 0 
of a rectangular co-ordinate system. The bottom is assumed to coincide with 
the plane z = - B. In  order to use discrete Fourier expansions, a large rectangular 
ocean area A,, with periodic boundary conditions, is considered. 

The density p ( z )  is assumed to have the following characteristics: 

P(z )  = po, a constant, for - D < z < 0. 

A thin pycnocline with density change 6p occurs at z = - D. For - B < z < - D, 
p ( z )  is a monotonically decreasing function of z. We assume that surface wave 
motion is negligible below z = - D. 

The Brunt-Vaisiila frequency N(z)  appears in the equation for the internal 
waves (see, for example, Phillips 1966, chap. 5) and in the chosen model for the 
ocean ha.s the values - D  < z < 0, 

and 

In  (l.l), 26 is a small interval somewhat greater than the thickness of the pycno- 
cline and the quantity g represents the acceleration of gravity. 

Although our dynamical equations are obtained for this rather general model, 
the numerical calculations are based on either of two more specific models. The 
first is that of Garrett & Munk (1972a): 

-D < z < 0, 
N(z)  = {:,exp[(zfD),B], - B  < z < -D, 

No = 5.2 x s-l, B = 5 km, b = 1.2 km. (1.2) 
The internal-wave eigenmodes for this model are obtained and used in the WKB 
approximation. 

The second model which we use is the two-layer model, which is somewhat 
unrealistic for oceanographic applications but is useful for comparing calculations 
with a number of water tank experiments. In  this model N(z )  = 0, except near 
z = -D, where 

P ( 2 )  dz = gsp/p,. (1.3) 
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The derivation of the surface-wavelinternal-wave coupled mode equations is 
described in $ 2  and the equations numerically integrated for the example of the 
generation of a single internal wave by the interaction of surface waves. A 
‘ cascade’ process of energy exchange familiar from laser-plasma coupling is 
seen to occur for the surface-wave/internal-wave coupling. The rate a t  which 
an internal-wave spectrum is generated by a given spectrum of surface waves is 
calculated in an analytic approximation in $ 3. 

In  $ 4 the calculation an discussion are continued from $ 3 for an equilibrium 
surface-wave spectrum using both a dimensional scaling argument and a direct 
numerical integration of the coupled nonlinear equations. The dependence of 
the rate of generating internal waves on the mixed-layer thickness D ,  pycnocline 
strength Splp, and the internal-wave horizontal wavenumber K for the lowest 
three internal-wave modes is also studied. We conclude in this section that the 
energy transfer rates calculated using either the Garrett-Munk or two-layer 
models of the undersea environment are much greater than those based on the 
constant Brunt-Vaisak model used by Kenyon (1968). The total energy transfer 
rate from the surface to the internal-wave spectrum is also calculated and found 
to be comparable to estimates of the required rate made by Garrett & Munk 
(19723) and also made by Bell (1975) for generation due to current flow over an 
irregular bottom. 

I n  $ 5 the main results and conclusions of the paper are summarized. In  addi- 
tion, application of the surface-wave/internal-wave coupled mode equations to 
the tank experiments of Lewis et al. (1974) and Joyce (1974) are briefly discussed. 
Also discussed are the results of some numerical calculations of the development 
of a ‘mottled’ appearance of the ocean surface in the presence of internal waves 
[see Ape1 et al. (19753) for satellite photographs of this phenomenon]. 

2. The coupling of surface and internal waves 
The equations describing mutual coupling of surface and internal waves are 

presented in this section. In  the mixed layer, corresponding to -D < x < 0, the 
flow is treated as irrotational and the fluid velocity u can be expressed as the 
gradient of a potential @(r, 2 ) .  (Here and elsewhere in this paper we let r = (2, y) 
represent a vector in the horizontal plane z = 0.) 

We assume that the internal-wave modes of interest to us have much lower 
characteristic frequencies and much longer wavelengths than have the surface 
waves. This suggests writing the velocity potential @ in the form 

@(r, 2, t )  = &(r, 2, t )  +fur, 2, t).  (2.1) 

Here q5u contains the high frequency, high wavenumber components (surface 
gravity waves) of @, and g5i contains the low frequency, low wavenumber com- 
ponents (internal waves) of 0. Similarly, we can write the vertical displacement 
6 of the ocean surface, due to wave motion, as a sum of a high frequency part cu 
and a low frequency part &: 

C(r, t> = (so-@, t> + CiP, t ) .  (2.2) 
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Bernoulli’s equation and the kinematic boundary condition on the surface 
z = C(r, t )  are, respectively, 

2 = Y, (2.3) 1 aqat + i(vaq2+gC = 0, 
ayat + (0, a). (v,g) = a a p z ,  

where V, is the two-dimensional gradient operator, i.e. V, E (a/ax, a/ay). 

by the equation [see, for example, Phillips 1966, chap. 5, equation (5.2.4)] 
For small amplitude waves the fluid motion below the ocean surface is described 

at2 a22 +Vi  w(r, 2, t )  + N 2 ( z )  Viw(r,  2, t )  = &(u, N ) .  
a 2 ( a 2  1 

Here w is the vertical component of the fluid velocity and N is the Brunt- 
Vaissila frequency given by (1.1). The effects of the earth’s rotation have been 
neglected in (2.4) because the internal waves that exhibit strong coupling to 
surface waves in our calculation have frequencies substantially higher than the 
inertial frequency. (This will be evident from table 1, described in $3.) 

The quantity Q(u, N )  in (2.4) represents the effect of the internal-wave non- 
linear terms and is set equal to zero (Q = 0) in our analysis. To see that this is 
justified, we first note that in the mixed layer, corresponding to - D < z < 0, 
N = 0 and u = V<D. Direct substitution of these values of N and u into the 
expression for Q [the explicit form is given by Phillips 1966, equation (5.2.5)] 

(2.5) 
gives 

&(V@, 0) = 0, 

which is consistent with our assumption of potential flow in the mixed layer. For 
z < - D we have assumed the flow associated with surface waves to be negligible. 
Here too we can set Q = 0, to consistently keep only those nonlinear terms 
which couple surface and internal waves. 

Since we have no coupling of surface and internal waves in either the mixed 
layer or below, it is the surface boundary conditions (2.3) that contain the non- 
linear terms responsible for interaction between the two wave systems. 

Near the surface, the low frequency fluid velocity associated with internal 

(2.6) 
waves is 

where U and w, are the horizontal and vertical surface-current components, 
respectively, and e is a unit vector parallel to the x axis. The corresponding high 
frequency velocity field associated with surface waves is 

ui(r ,  t )  = Vq&, = U(r, t )  + ew,(r, t ) ,  

v = V&. (2.7) 

IUI B IWSL 161 % ILL IVsCgI B IVsY& (2.8) 

The properties of internal waves permit us to assume that 

The first two inequalities describe the fact that for internal-wave motion there 
is little displacement of the ocean surface. The third inequality states that the 
surface slope due to internal waves is expected to be much less than that due to 
surface waves. 
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To describe the surface-wave motion, we define the high frequency velocity 

(2.9) 

With use of the inequalities (2.8), we extract the high frequency, short wave- 
length part from (2.3) to obtain the coupled equations 

@/at + u. V,) + scg = 0, (2.1 Oa) 

potential on the surface z = ct(r, t )  as 

$s(r, t )  = $g(r’ C&, t ) ,  0- 

(2.10b) 

In  deriving (2.10) we have used Laplace’s equation to eliminate the vertical 
derivative and in so doing have introduced the operator 

K ?z (-V$)&. (2.11) 

It is understood that K will always act on a Fourier series. To illustrate this, we 
write 

then 

q5s = CP(k) exp (ik. r), 

K $ ~  = kP(k) exp (ik. r). 
k 

In  deriving (2.10) we have also neglected nonlinear terms which do not couple 
surface and internal waves. In  ( 2 . 1 0 ~ )  we have neglected terms O(ws lVs$sl) 
and smaller. Similarly, in (2.10b) we have neglected terms O(l[,drl/g) and 
smaller, where aU/at 3 0, etc. 

We next extract the low frequency, long wavelength part of (2.3). On following 
an argument of Phillips [1966, equation (5.2.12)], we obtain with a little straight- 
forward algebra the surface boundary condition 

(2.12) 

Here we have written ( F)LF as representing the ‘low frequency, long wavelength 
part’ of the quantity P. On taking account of a cancellation of certain terms, we 
find that the largest terms neglected in (2.12) are of relative order (internal- 
wave frequency/surface-wave frequency). 

The linearized form of (2.4), i.e. Q = 0, (2.10) and the boundary condition 
(2.12) are the equations used in this paper to study surface-wavelinternal-wave 
interactions. If the nonlinear couplings were neglected, (2.10) would describe 
linearized surface waves. Similarly, (2.12) would be replaced by 

[a$i/azIz=o = 0, (2.13) 

which together with the linearized form of (2.4) describes linear internal wave 
modes. 

We now re-express (2.4), (2.10) and (2.13) as rate equations for the time 
evolution of the linear mode amplitudes. In  the absence of coupling between the 
surface and internal waves, the general solution to (2.10) can be expanded in a 
Fourier series, within the rectangular area of ocean being considered, as 
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C(k) + w;C(k) = 0. (2.15) 

The vertical velocity for linear internal waves may similarly be expanded in 
the form 

(2.16) 

where ( j ,  K) describes an internal wave of vertical mode number j ( j  = 1,2,  . . . , 
in the notation of Garrett & Munk 1972a) and horizontal wave vector K. Also, 
in the absence of coupling the coefficients A,,,,  satisfy the equation 

A j , K  + Q2(j, K )  A j , K  = 0. (2.17) 

Substitution of the expansion (2.16) into (2.4), with Q = 0, gives the equation 
(here W’ = d W/&, etc.) 

w;,K + K2[m2/Q2(j,  K )  - 11 Y’,K = 0. (2.18) 

The boundary condition (2.13), which applies in the absence of nonlinear coup- 
ling, and that at z = - B imply that 

WjK(0) = W;,,,( - B )  = 0. (2.19) 

The normalization of ?.,K is so chosen that in the mixed layer, where N = 0, 

J4$Ic = Ksinh (Kz),  - D  < z < 0. (2.20) 

The expressions (2.16) and (2.20) permit us to write the velocity potential #i 
at the surface z = 0 as 

$i(r, O ,  t ,  = 2 A j , K ( t )  exp ( iK-r ) -  (2.21) 
i, 

The vertical displacement E(r, t )  at the pycnocline will be used as a convenient 
indicator of the internal-wave amplitude. This is written as 

= C. &(r, 0, 
i 

a&/at = Aj,K(t)  Jl$K( - D )  exp (iK. r). (2.22) 
K 

The nonlinear interaction of surface and internal waves modifies (2.15) and 
(2.17). This modification describes an exchange of energy among the linear 
modes. For our application the time scale for this nonlinear exchange, say tNL, 
is characteristically large compared with the linear wave periods. We therefore 
assume (and later justify) that 

tNLQ(j,K) B 1, t,,w, B 1 (2.23) 

for wavenumbers and mode numbers of interest here. 
The modified form of (2.15) is readily obtained from (2.10) by using (2.21) 

to calculate the fluid velocity U = V,$$ and again expanding &, and $, in the 
linear modes of (2.14). The resulting equations are of the form 

C(k)+wiC(k) = [V,. (Ug,)-a(U.V,$,)/at],, (2.24) 

where [. . .Ik implies the Fourier amplitude of the quantity in square brackets. 
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To modify (2.17) also so as to include the nonlinear couplings, we must use 
the boundary condition (2.12). The modification requires that we rewrite (2.16) 
in the form 

(2.25) 

The term AWK is required to satisfy the boundary condition (2.12), which is 
written as 

(2.26) 

where r E ( t )  is the Fourier amplitude corresponding to a wave vector K of 
w, $1. 

If we substitute (2.25) into (2.4) and use (2.18), we obtain the equation 

[A’,,+ fi2(j,K)Aj,g] f i2-2(j,K)K2N2f5,~- [$(g-E2) A?$& = 0. 
i 

(2.27) 

and integrate with respect To simplify this equation further we multiply by Wn, 
to z. The orthogonality relation 

N2W,,K q * , K d z  = 0 if n + j 
permits us to write 

0 
[A’,,Q-’(j,K) +Aj’,=]K’ N2(F,K)2dz s-n 

= /:BdZF,K[& (&-K2) -N2K2]  A%. (2.28) 

I n  the absence of nonlinear coupling, we should have AWE = 0 and solutions 
of the form 

A j , K ( t )  = Aj,K(o) exp Lifi(j, K ,  t1 
would result. The effect of the nonlinear coupling is anticipated to lead to a 
variation of the L I ~ , ~ ( O ) ’ S  on the time scale tNL. 

The nonlinear term on the right-hand side of (2.28) will be of importance in 
our calculations only for the frequency components of AWE which closely 
match those of Ai,K (the ‘resonance condition’). We are therefore justified in 
replacing a2/8f2 by [ - @(j, K ) ]  in the right-hand side of (2.28)t. Use of (2.18) 
then leads immediately to the equation 

0 

- B  
A ’ ~ , K +  f i z ( j , ~ ) ~ i , g  = f i 4 ( j , ~ )  w~,K(o)  rE[R‘f N Z ( % , , ) ~ ~ Z ] - ’ ,  (2.29) 

where (2.26) has been used. 
For subsequent calculations we define a quantity g’(j, K )  by the equation 

0 

--B 
f N 2 ( F , R ) ’ d ~  = g’( j ,K)  W,”,,(-D) = K2sinh2(KD)g’(j,K), (2.30) 

t A more formal way to obtain this result would be to introduce ‘fast’ and ‘slow, 
time scales. Multiplication of (2.28) by exp [Kl( j ,  K )  t ]  and averaging over the fast time 
scale would then lead to (2.29). (Compare Whitham 1974, chap. 14.) 
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The quantity I?= is expressed in terms of the surface-wave amplitudes using 
(2.12) and W;,,(O) = K2 from (2.20). 

Equations (2.24) and (2.29) represent the coupled dynamic equations which 
we shall use to describe the interaction of surface and internal waves. Our ex- 
perience with numerical integration of such equations leads us to replace the 
mode amplitudes C(k) and A j , K  by classical action-angle variables J(k), @(k), 
J( j ,K) and @(j,K). The resulting equations replacing (2.24) and (2.29) are of 
first order in time and are very stable when integrated numerically. The surface 
mode amplitudes in terms of action and angle variables are 

Q(k) = rgJ(k)/(2Po%)l'exP c k i@(k)l ( 2 . 3 1 ~ )  

and the internal mode amplitudes are 

A j,Ix = {W, K )  4 3 . 9  K)/[P,T(j, K)l)' exp [ k w, K)1, (2.31b) 

where T( j ,  K )  = [g'(j, K)]4 K sinh (KD)/Q(j ,  K ) .  (2.32) 

Travelling waves or standing waves may be constructed by inserting (2.31) into 
(2.14) and (2.21). For the calculations described in the following sections, 
travelling waves with periodic boundary conditions were employed. The expres- 
sions for the velocity potentials and displacements then have the form 

(2.33 a) 

(2.33b) 

for the surface waves. For the internal waves the corresponding relations are 

The equations of motion in terms of the action-angle variables can be obtained 
by directly substituting ( 2 . 3 1 ~ )  in (2.24) and (2.31 b )  in (2.29). The surface current 
U in (2.24) must then be expressed in action angle variables using (2.31b) in 
(2.21), and the low frequency surface gravity waves in I?, must be expressed in 
action-angle variables using (2.3 1 a). This lengthy algebraic procedure results 
in a system of coupled second-order differential equations which must be nu- 
merically integrated for the physical problems of interest. An alternative method 
which yields a coupled system ofjkst-order differential equations is to construct 
a Hamiltonian H for the coupled surface-wave/internal-wave system from which 
the equations of motion immediately follow using Hamilton's equations (see 
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Watson, West & Cohen 1975). The proper Hamiltonian for the coupled system is 

H = €€,+HI+ V ,  (2.35) 

where H, = E J(k) @k, HI = 2 J ( j ,  K) Q(jJ w, (2.36a, b )  

V = - C &,,G(k, n;j, K) [J(k) J(n) J ( j ,  K)]* sin [O(k) - O(n) - O(j ,  K)]. 

k 1, K 

3. k, K 11 ( 2 . 3 6 ~ )  

The quantities H, and HI represent, respectively, the energy per unit area for 
freely propagating surface and internal waves. The effect of surface-wave/ 
internal-wave coupling, as given in (2.24) and (2.29),  is described by the term 
V in (2.36).  For brevity we shall not describe the derivation of these expressions 
here. Their validity may be directly verified, however, by comparing Hamilton’s 
equations (2.37) with (2.24) and (2.29).  

The equations of motion in terms of the action-angle variables are 

+ d ( k  + M,$, M) [J(k + M) J(j’ ,  M)/J(k)]*sin $(k + MJ, M) 
- 8(k - K,j’, M) [J(k - K - M) J( j ’ ,  M)/J(k - K)]J sin $(k - K,j’, M) 
- 8 ( k  - K + M,j’,M) [J(k - K + M)J(j’,M)/J(k- K)]Jsiii$(k - K + M,j’,M)] 

+ x @P,j,  K) [J(P) J(P - K)/J(j, K)l+ sin $(P,j, K), ( 2 . 3 7 ~ )  
P 

where the angle variables always occur in the combination 

$(k,j,K) O(k)-O(k-K)-O(j,K). (2.38) 

In  these equations we have written 

i?(k,j, K) = G(k, k - K;j, K) 

and G(k, n; j ,  K) = K. [@,k + wknl [Wj, K ) / ( w , o k p ,  s)l*/T(j, K ) .  (2.39) 

I n  writing (2.36) and (2.37) we have dropped as unimportant some rapidly 
oscillating terms involving sin [O(k) + O(n) + O(j, K)]. 

In  the absence of nonlinear coupling, the actions J ( k )  and J ( j ,  K) are constant 
a d  O(k) = w,t + initial value, O(j ,  K) = Q(j, K) t + initial value, as is clear from 
(2.37).  We see then from (2.33) and (2.34) that our choice of variables is such that 
each linear mode corresponds to a progressive wave with wave vectors k, K, etc. 

13 F L M  77 
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FIGURE 1. The r.m.8. amplitudes for three surface- and one internal-wave mode 
are shown as functions of time. 

[The expansions (2.33) and (2.34) may easily be modified to describe standing 
waves.] 

The practicality of the equations of motion (2.37) is demonstrable in that 
integration of the coupled, first-order, ordinary differential equations has been 
achieved numerically to high accuracy with the simplest, first-order Euler 
scheme. 

We describe a numerical integration of (2.37) for a simple example chosen to 
illustrate time scales and frequency resonance. For this calculation we take 
D = 100 m and 6p/p, = 10-3 and use the two-layer model of (1.3). A single 
internal-wave mode of wave vector K interacts with three surface-wave modes of 
respective wave vectors 

k,, k2 = k, - K, k3 = k1- 2K. (2.40) 

The phases $(k,j, K), at time t = 0, are all set equal to zero in (2.37). 
We choose the modes with wave vectors in polar co-ordinates k, = (0.03 m-l, 

O O ) ,  k, = (0.029896 m-l, leg"), k, = (0.029824 m-1, -3.8") and K = (0.001 m-l, 
83") and with frequency differences Awl, = 9-44 x 10-4 s-l, Awl, = 1.59 x lo-, s-l 
and Awz3 = 6.48 x lo-* s-l, with AwSj = w i - w j .  The root-mean-square (r.m.s.) 
amplitudes of the four modes, i.e. (<:)* or (<:)a, are shown in figure 1 as a func- 
tion of time. The initial decrease in amplitude of the internal-wave mode is a 
consequence of our choice of initial condition that the phases $ vanish a t  t = 0. 
As J(1, K) reaches its minimum value, the phase $(k, I, K) switches to the value 
T ,  and J(1,K) begins to increase. Note that Awl, = Q(l ,K) ,  thereby forming a 
resonant triad and that Aw,, is close enough to resonance that significant coupling 
to mode 3 occurs after the mode 2 amplitude has reached about 4 m. For a 
slightly different value of Aw23 it was found that the amplitude of wave 3 
remained constant throughout the interaction, i.e. no energy exchange. 

This example suggests the following generalization. If we write 

k,=k , - (n -1 )K,  n = 2 , 3  ,..., 
and assume k, nK for n's considered, then with w, = oa, 

~ ~ - 1 -  W ,  E K .  C&), 

(2.41) 
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where C(k,) is the group velocity of mode 1. Now if 

Q(1,K) z K-C(kI), (2.42) 

we satisfy the resonance condition between the internal wave and adjacent 
pairs of surface waves. In  this case, a ‘cascade’ process of energy exchange can 
result, just as has been noted for laser-plasma wave couplings (see Cohen, 
Kaufman & Watson 1972). 

3. Applications to ocean waves 

mena and discuss some consequences of (2.37). 

Phillips (1 966, $4.1). This spectrum is so normalized that 

I n  this section we relate the formalism developed in § 2 to ocean wave pheno- 

The power spectrum Ys(k) of ocean surface waves has been reviewed by 

Here the angular brackets represent an ensemble average over many specific 
realizations of the ocean. For simplicity, we assume that (c:) is independent of 
position on the ocean surface. In  writing (3.1) we have replaced a sum over dis- 
crete modes in the surface region of area A,  by an integral over wavenumber. 

The corresponding internal-wave power spectrum Yr(j, K) has been discussed 
by Garrett & Munk (1972a, 1975). The indicated arguments of Yr are the mode 
number j and wavenumber K. This spectrum is so normalized that 

00 

j=1  / d z m r ( j , K )  = j=1  2 <t;) = ( ~ 2 ) ~  

which is here considered to be independent of r = (x, y) and to be evaluated at 
z = - D ,  the pycnocline depth. 

These power spectra may be related to the action variables using (2.33) and 
(2.34). We &st observe that 

( C 3  = z (J(k) %)/(g1/30), 

<t;> = x ( J ( j ,  K) Q(j, K)) / [pog’( j ,  WI.  
k 

k 

Therefore, using (3.1) and (3.2) we obtain 

(J(k)) = KW2 9 P o n ~ k A O ) I  Ys(k)> (3.3a) 

< J ( j ,  K)) = [ ( W 2 9 ‘ ( j ,  m P O / ( w  A011 YAj, K). (3.3b) 

The equilibrium surface-wave spectrum suggested by Phillips (1966, 0 45) is 

Ys(k) = 4 x 10-3k-43s(k,/l)h(k), ks > k > ko, (3.4a) 

1 for ks > k > ko, (3.4b) 
0 for k < ko or k > ks. (3.4c) 

of the form 

12-2 

h(k) = 
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Wavenumber (m-l) 

FIGURE 2. The energy per mode for surface and internal waves is shown as a function of a 
wavenumber. The equilibrium spectra of Phillips (1966) and Garrett & Munk (1976) with 
D = 100 m and @/p, = are used. 

Phillips chose 
7~-1 for k . 6 ~  cosp> 0, (3.5a) 

3 5 ( k ’ p )  = (0 for k . 6  < 0, (3.5b) 

where & is a unit vector in the direction the wind is blowing. The internal-wave 
spectrum suggested by Garrett & Munk (1976) is 

YI(j,K) = 8.5 x 10-4Kj/[(K2+ 1.15 x 10-9j2)2(j2+9)]. (3.6) 

The energy per mode per unit area, (ukJ(k)) and (a(l ,K)J(l ,  K)), is shown in 
figure 2 as a function of wavenumber, using (3.3), (3.4) and (3.6). We assume a 
‘rectangular ocean’ of dimensions 100 x 100 km and use the Garrett-Munk 
frequency profile (1.2) with D = 100 m and &/p, = 

We next study the transfer of excitation from a sharply collimated spectrum 
of surface waves to internal waves, using the Garrett-Munk ocean model (1.2). 
By ‘sharply collimated’, we mean that the function gS(k,/3) in (3.4) vanishes 
unless /3 z Po, a constant. The excitation of a single internal-wave mode ( j ,K) 
having a very small action variable J ( j ,  K) will be considered. The energy source 
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for driving this internal-wave mode will be a set of large amplitude surface 
waves having wave vectors pl, p2, . . . and corresponding action variables 

JO(Pl), JYPZ), * * * - 
The set of waves consisting of the third members of resonant triads are surface 
waves of small amplitude having wave vectors & = pi - K and respective action 
variables J(ki )  (i = 1,2, . ..). We shall assume that the large amplitude quantities 
Jo(pi) are constant during the time of interaction (the approximation of para- 
metric amplijkation; see, for example, Nishikawa 1968). The ‘locked phase’ 
approximation in which the relative phases of the modes are assumed constant 
in time will also be used, so (2.37) now reads 

4 k i )  = 2@(Pi,j, K) CJO(Pi) J(kd J ( j ,  K)l4 ( 3 . 7 ~ )  

4 5  K) = x 2@Pi,j, K) [JO(Pi) J(&) J ( j ,  K)14 (3.7b) 
i 

and cos $(pi,j, K) = - 1 for all modes (assumed). 
We look for a solution to (3.7) of the form 

J(k,)  = Ciexp (at), J ( j ,  K) = Dexp (at) (3.8) 

and find that 

Using (3.3a) and transforming from the discrete to the continuous system we 
can re-express a2 as an integral over the surface-wave spectrum: 

a2(j,K) = c [2@(P,,j, K)12JO(Pi). 
i 

a2(j, K ,  = I d2k4gpO[d(k,j, K)12 ys(k) /Wk-  (3.9) 

To simplify (3.9) we use the assumed condition that K < k and (2.39) to 
write 

Now the resonance condition 

f = Wtk-KI, f @k-*( j ,K) ,  (3.10) 

lets us write ( k  . K - 3K2)2 4k3Q2(j, K)/g.  (3.11) 

Collecting these results, and using the spectral representations (3.4), we can 
write (3.9) in the form 

The observations of Tyler et al. (1974) suggest that the spectral angular dis- 
tribution g8(k ,B)  in (3.4) is strongly peaked near the long wavelength cut-off k,, 
and in the direction the wind is blowing. If a modification of the Phillips spectrum 
(3.4) is desired (for example, to describe a swell) an appropriate function h(k) 
may be used in (3.12). 

Now, (3.13) implies that, for k M ko, k and K are nearly perpendicular, so we 
might anticipate that a well collimated beam of surface waves would generate 
internal waves propagating at nearly right-angles to the direction of the surface 
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W P O  = 0 +/Po = 3 x 10-4 
A h 

I > f 

Wave- Angular WKB Wave- Angular WKB 
number frequency turning Mode number frequency turning 

Mode (m-l) (rad/s) depth number (m-l) (rad/s) depth 
number K w, K )  (m) j K w, K )  (m) 

i 10-3 2.0 x 1230 1 10-3 2 . 0 ~  10-3 1220 
1 3x10-3 3-8x10-3 490 1 3 x 1 0 4  3 . 8 ~ 1 0 - 3  480 

2 10-3 1 . 0 ~  10-3 2030 2 10-3 1.1 x 10-3 2000 
2 3x10-3 2 . 4 ~ 1 0 - 3  1030 2 3x10-3 2 . 5 ~ 1 0 - 3  990 
2 10-2 4 . 2 ~  360 2 10-2 4 . 5 ~  10-3 270 

1 10-2 4 . 9 ~  10-3 165 1 5.1 x 130 

TABLE 1. Internal-wave angular frequencies and WKB turning-point depths are listed for 
modes 1 and 2 and several wavenumbers. The Garrett-Munk ocean model (1.2) is used in 
the calculation. 

/ 4  

103 I I 
I 

1 0 - 4  10 -3  10-1 

K (m-l) 

FIGURE 3. The e-folding time for growth of an internal wave of wavenumber K due to large 
amplitude swell is shown. Growth times are shown for the four lowest modes ( j  = 1 ,2 ,3 ,4 )  
and a mixed-layer thickness of 100 m. - , sp/po = 0; ----, 6p/po = 10-8. 

waves (Hasselmann 1966; Kenyon 1968). Ape1 et al. (1975a) have, indeed, 
reported what seem to be internal waves generated by a Iarge swell and propagat- 
ing a t  nearly right-angles to the swell. 

To model this phenomenon, we take gS(k, /3) = S(p) and evaluate the integral 

(3.13) 
in (3.12) as 1 

j : h ( k ) p P g s ( k , / 3 )  5 - v,, 
where V ,  is a 'characteristic velocity'. 
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To complete the numerical evaluation of the growth rate a from (3 .12)  we 
use the Garrett-Munk ocean model (1 .2 ) .  The internal-wave eigenmodes are 
evaluated from (2 .16)  and (2.17) using the WKB approximation, and the coupling 
coefficients g' are then calculated using (2.30). Some illustrative results are given 
in table 1 for the angular frequency Q and the WKB turning-point depth. 

For the choice V,  = 20 m/st we have displayed the growth rate a-l(j, K )  (in 
seconds) as a function of wavenumber K in figure 3 for the first four modes, 
corresponding to j = 1 , 2 , 3 , 4 .  The mixed-layer depth D is here 100 m. The 
solid curves correspond to Sp/po = 0, the dashed curves to 6p/po = at the 
pycnocline. The lowest-order internal-wave modes are excited much more 
strongly than are the higher modes. Since the lower modes are concentrated 
nearer the ocean surface this is not unexpected. We stress that the variation in 
density a t  the pycnocline is superimposed on the more general frequency profile 
given by (1 .2) .  

Some insight into the validity of the 'locked phase' and 'parametric amplifi- 
cation' approximation will be found in the next section, where the numerical 
integration of (2 .37)  is studied. 

4. Generation of internal waves from an equilibrium surface spectrum 
In  this section we study the generation of a specific internal-wave mode (j, K) 

by an equilibrium surface-wave spectrum. For this we use the expression (3 .4 )  
with '3s(k,/3) given by (3 .5 ) .  Since the spectrum (3 .4 )  is isotropic over a hemi- 
sphere, the generated internal-wave spectrum will be approximately isotropic. 
A set of interacting triads will have surface wavenumbers pi and k, = pi - K, i = I, 
2,  ... . 

To simplify the notation, we write SZ = Q(j, K ) ,  G, = d(pi,j, K), (rt = (r(pi,j, K) 
and $= J ( j ,  K). Then, for the set of interacting triads, (2.37) can be written in 
the form 

J(ki) = - 2Gi[J(pi) J(kJ $14 cos 1C.i = - J(pi), ( 4 . 1 ~ )  

(4.1b) 

$i = m p $ - m k i - Q + z  G,[J(P,)J(k,)/$14sin(r, 
n 

- Gi{[J(ki)/J(pi)$ - [J(~i)/J(ki)l'} J$ sin @t* (4.1 C) 

The resonance condition (3 .10)  can be satisfied for pi < pc, the wavenumber 
at which the surface-wave group velocity is equal to the internal-wave phase 
velocity: 

pc = gK2/(4SZ2). 

Thus we include only those modes in (4 .1 )  for whichPC > pi > k0.$ 
Exact resonance is not required in (4.1) for significant transfer of excitation. 

To take account of this, we set op - w k -  Q = -S f ,  where S f  represents the fre- 
quency mismatch. Now (3.11) becomes for a given wave vector p 

p.K =pKc0~/3 = &[k2+K2- ( f+Sf )4 /g2 ] .  

t Since a varies as V,-* the curves in figure 3 are easily re-scaled for other values of V,. 
$ For our numerical examples presented later, i t  can be verified that p ,  lies below the 

range of capillary wavenumbers. 
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At exact resonance, corresponding to S f  = 0, the angle P is $,, where 
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z [I -p/pcI+. 

For S f  + 0, we have P = P, + SP, and 

(4.3) 

SP 2upGf/(gKsinP,). (4.4) 

The mode index i in (4.1) thus labels a magnitude and a direction for each p i .  

follows: J(pi )  = ZiJo(pi) ,  J (k i )  = X i J o ( k J ,  y = $, Y ,  where [see (3 .3 ) ]  
Integration of (4.1) is simplified by introducing dimensionless variables, as 

J o ( P i )  = [(21r)2g~o/Aou,Iys(~i) Jo(ki), (4.5a) 

(4.5b) 

Here So has the dimensions of length and is to be determined by the condition 
(4.7) below. A dimensionless time T is introduced by the relation t = a-lr, 
where a is defined, as in $ 3 ,  by the equation 

a2 = [2C#i]2JO(pi). 
i 

The constant So is then defined by the relation 

This takes proper account of the dependence of Gi on pi. 
The scaling (4.5) for the action variables implies that for the assumed equili- 

brium surface-wave spectrum the initial values of the Xi and Zi should be near 
unity. 

To evaluate a2, we start with the expression (3.12). If we make the arbitrary,? 
but reasonable, assumption that ISf I < a, then (4.4) can be used to give 

JdP%(P,P) = 4upa/(7TgKsinPr). 

Integration over wavenumber, with the upper limit p ,  (the lower limit k, can 
be taken to be zero for the present integration), gives 

a = r3.2 x 10-2Q3(j, K)/n-g'(j, K )  Ksinh2 (KD)] .  (4.8) 

The adopted scaling of variables in (4.1) leads to coefficients of order unity, 
removing the coupling strengths Gi and the dimensional quantities Jo(pi) and 
3,. Writing (2n)2/A0 = 6p26p1/ = pSpGp lets us carry out the mode number sums 
as a numerical integration. 

Equations (4.1) were numerically integrated with the Zi and Xi initially equal 
to unity (changing initial conditions showed this to be uncritical). Nine values 
for p and eight for pi were used, making a total of seventy-two modes in (4.1). 
(Integration with fewer modes seemed to indicate little sensitivity to the number 
of modes used.) 

A characteristic growth time rg for the internal-wave mode was defined as 
rg = Y / P ,  evaluated at that time r that maximum power was being delivered 

t Since u is a scale parameter, its precise definition is of course arbitrary. 
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to the internal wave (i.e. 
This corresponds to a dimensional time 

was a maximum).? It was found that rg = 0.31. 

t, = 0 . 3 1 ~ ~ ~ .  (4.9) 

It might be noted that negligible transfer of excitation occurred for Sf > 1Oa. 
(The arbitrary choice ISf I 5 a! used in evaluating a is of course compensated in 
the numerical value for T,, since t,  is independent of this choice.) 

Our dimensionless scaling of (4.1) was motivated by the simple model calcu- 
lation of the last section. It is interesting to note that our elaborate numerical 
calculation is very close to the predictions of this earlier model based on the 
locked phase and parametric amplifier approximations. 

To evaluate t ,  using (4.8) and (4.9), the Garrett-Munk ocean model (1.2) and 
the internal-wave eigenmodes in the WKB approximation were again used. 
The resulting values of the growth time are shown in figures 4-7 for a range of 
parameters . 

In  figure 4 we show t ,  (in seconds) as a function of the mixed-layer thickness 
D for the modes j = 1, K = 0.015 111-l and 0.005 m-1 and with Sp/po = 0. 

In  figure 5 we show t ,  as a function of Sp/po for D = 100 m, K = 0.01 m-l 
a n d j  = 1,2,3.  

t For Y well below its saturation value the choice of time at which to evaluate rg was 
not very critical. 
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1 0 3 ~  L 0.4 0.8 1.2 1.6 2.0 

FIQURE 5. The growth time t ,  [see (4.9)] is shown as a function of Sp/po for a mixed-layer 
thickness of 100 m, internal wavenumber 0.01 m-l and modes j = 1,2 ,  3. 

K (m-l) 

FIUURE 6. The growth time t ,  [see (4.9)] is shown as a function of wavenumber for a 
mixed-layer thickness of 100 m, 6p/p, = 0 and modes j = 1,2 ,  3. 
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FIGURE 7. The growth time t ,  [see (4.9)] is shown as a function of wavenumber for a 
mixed-layer thickness of 100 m, &/p, = 10-3 and modes j = 1, 2, 3. 

Finally, in figures 6 and 7 we show t f f  as a function of K for j = 1 ,2 ,3 ,  
D = 100 m, and @/p0 = 0 and lob3, respectively. 

The weak excitation of‘the high-order modes is a consequence of their extend- 
ing to greater depths than do the lowest modes. This greater depth increases 
the value of g’(j, K )  [see (2.30)] and thus reduces the coupling strength. [This is 
seen, for example, in (4.8).] The very weak coupling between surface and internal 
waves found by Kenyon (1968) is related to this observation. Kenyon used a 
constant Brunt-VaisBIL frequency model, for which the internal wave extends 
to the ocean bottom, leading to a very large g’(j ,K) for all modes. Since the 
coupling interaction occurs near the ocean surface, the deeper the internal wave 
extends, the less effective the coupling appears to be. To test this conclusion, we 
evaluated g’(j, K )  for an N = constant model (below D = 100 m) giving fre- 
quencies close to those of table I. For KD 5 1, we found g’ to be between one 
and two orders of magnitude larger than that given by the Garrett-Munk model. 
The corresponding values of a(j ,  K )  were a t  least an order of magnitude smaller 
than those given for mode j = 1 with the Garrett-Munk model. These conclusions 
are consistent with those of Joyce (1974), who noted that his two-layer model 
gave much stronger coupling than that found by Kenyon (1968). 

The calculated interaction times given in figures 6 and 7 can be used to estimate 
the rate at which energy is fed to the internal-wave system by surface waves. 
Relation ( 3 . 3 b )  lets us write the power per unit area delivered to the internal 
waves of modej as 

= PoCS’(j,K)\fP,(j,K)dZK/tB. (4.10) 

We have evaluated this integral using the Garrett-Munk spectrum (3.6) with 
t, taken from figure 6. The integration is restricted to the range K > 7 x m-1, 
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since figure 2 (and our numerical calculations) suggests that when 
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K > 7 x m-l 

the internal-wave energy per mode is too large to receive substantial energy 
from the surface waves. The results fo r j  = 1 , 2  are 

(4. I I )  Pl N 3 erg/cm2 s, P2 N 8 erg/cm2 s, 

the principal contribution coming from the range 

7 x 10-4 m-l < K < 5 x m-l. 

These transfer rates are surprisingly close to the value of about 1 erg/cm2 s 
obtained by Bell (1975) for considerations of internal tides. They are also not 
very dissimilar from the dissipation rate of approximately 7 ergs/cm2 s esti- 
mated by Garrett & Munk (1972b). 

5. Discussion and conclusions 
We have presented a theoretical model to calculate the energy interchange 

between surface and internal waves when both can vary. The surface-wave/ 
internal-wave mode coupled equations are, of course, limited in their description 
of the energy transfer process in an oceanographic environment. The nonlinear 
interactions among surface waves, as well as among internal waves, have not 
been included in the model. Also, the coupling of the wind to the air-sea interface 
has been ignored. On the long time scale of the surface-wave/internal-wave 
interaction (characteristically several hours) these phenomena can significantly 
influence developing surface- and internal-wave spectra. However, in the equili- 
brium case, when the generation and dissipation (or transfer) rates of surface 
waves are not rapidly changing, the general conclusions based on the analysis 
and calculations describing the growth rates of the internal waves are thought 
to be useful. In  particular the dependence of these rates on the wave vector K, 
the depth of the pycnocline D, and the strength of density discontinuity a t  the 
pycnocline Sp/po for the lowest three modes j = 1 , 2 , 3  are thought to be of 
interest. 

Equation (2.37) has also been tested against the experiments of Lewis et al. 
(1974) and Joyce (1974) in Watson et al. (1975) and the agreement is quite good. 
In  the experiments of Lewis et al. the modulation in amplitude and slope of a 
mechanically generated surface wave interacting with a constant amplitude 
internal wave was recorded. Matching the group velocity of the surface wave 
with the phase velocity of the internal wave forms a resonance in the system, 
thereby inducing a strong energy transfer. Numerically integrating (2.37) 
reproduces the results of linear theory a t  early times, but shows a tendency for 
the modulation to approach a maximum value a t  late times owing to the non- 
linear frequency shift in the surface wave. The experimental points, however, 
do not extend into this nonlinear regime. 

Joyce (1974) experimentally excited an internal wave along a density dis- 
continuity by the resonant interaction of two driven surface waves and records 
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Surface waves (0.0298 m-l, 0,J, (0.030 m-l, 0,) 
(0.0302 m-l, a,), 

Internal waves (4  x 10-4 m-1, 90") (4.47 x m-l, 63.4') 
(6 x lo-' m-l, go"), (6-32 x m-l, 71.6') 
(8 x m-l, go'), (8.2 x lo-* m-l, 78") 
(10-3 m-1, go"), (1.02 x m-l, 784'') 
(1-2 x 10-8 m-l, go'), (1.217 x m-l, 80.5') 

(0.0304 m-l, 0,) 

TABLE 2. The wave vectors for twenty-four surface modes are listed, where for each wave- 
number k there are six angles given by 0, = -3.8'12, n. = 0, 1, ..., 6 .  Also listed are ten 
internal modes in polar co-ordinates. 

Direction of surface waves 

-19" 

- n  ~- ! n 0 ! n  n 

Distance, 2 (km) 

FIGURE 8. Contours of equal surface-wave height are shown in the two-dimensional 
horizontal plane of the ocean surface a t  time t = 0 for the twenty-four surface modes in 
table 2. The direction of propagation of the surface waves is indicated by the cone. 

the growth in internal-wave amplitude. The theoretical calculation of the growth 
of the internal wave uses an extension of a theory due to Thorpe (1966). In  our 
formulation this theory is equivalent to 'locking' the phase $(k, 1, K) to the 
value 7 ~ .  A modest improvement over Joyce's calculation was obtained by an 
integration of the complete set (2.37) in Watson et al. (1975). 

A constant Brunt-Vliisalii frequency was used by Kenyon (1968) to study the 
coupling between surface and internal waves. We concluded in $4 that this 
model leads to a very much weaker coupling than either the Garrett-Munk or 
the two-layer model (already observed by Joyce 1974) and is presumably un- 
realistic for studying the generation of internal waves by surface waves. 

In  5 2 the possible existence of a ' cascade ' process of energy exchange resulting 
from a matching of the internal-wave phase velocity and the group velocity of 
the surface-wave spectrum was discussed using a simple model. Such a process 
has been observed in another context by Cohen et al. (1972). The total energy 
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Distance, x (km) 

FIGVRE 9. Contours of equal internal-wave height are shown in the two-dimensional 
horizontal plane of the ocean surface a t  time t = 0 for the ten internal modes in table 2. 
The direction of propagation of the internal waves is indicated by the cone. 
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.w n -  
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- i n  

-n  
0 I n  -n  - 1  .n 71 

Distance, z (km) 

FIGURE 10. Contours of surface-wave slope are shown in the two-dimensional horizontal 
plane of the ocean surface a t  time t = 200 s for the twenty-four surface modes in table 2. 

transfer rate from the surface- to the internal-wave spectrum based on the 
more general results of $4 is found to be comparable to estimates made by Bell 
(1975) and Garrett & Munk (1972b) for other processes. 

Until now our attention has been focused on the energy transfer from surface 
to internal waves via the resonant triad interaction with the exception of the 
brief comments relating to the experiments of Lewis etial. A few remarks on the 
modulation of a surface-wave 'spectrum' by a spectrum of internal waves is 
probably of interest. 
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We model the ocean environment with 24 surface modes and 10 internal modes 
with the wave vectors shown in table 2.  In  this case, in addition to the surface 
waves having the equilibrium amplitudes prescribed by (3.4), the internal-wave 
amplitudes are given by the Garrett & Munk spectrum (3.6). In  figures 8 and 9 
a two-dimensional view of contours of equal surface- and internal-wave height, 
respectively, are depicted. In  figure 8, we see that the surface waves are travelling 
in a 19” cone from left to right and produce a weak interference pattern in 
approximately the transverse direction. 

In  figure 9 the internal waves are seen to propagate at approximately right- 
angles to the surface waves, also with a definite pattern. 

The intensity of incoherent light back-scattered from the ocean surface is 
dependent on the mean-square surface slope. In  figure 10 contours of equal 
surface slope, i.e. lV&l, are shown. By averaging the slope contours in this figure 
over a length large compared with the surface-wave wavelengths and small 
compared with the internal-wave wavelengths, one obtains a measure of the 
‘visibility’ of the internal-wave pattern. The contours are plotted a t  200 s to 
give the surface-wave field time to respond to the internal waves. 

The small-scale structure in figure 10 is qualitatively similar to the ‘mottling’ 
of the ocean surface observed in satellite photographs, by Apel et al. (1975a), 
taken from the ERTS1 satellite. This effect arises from the self-interference of 
the surface waves and is enhanced by the interaction with the internal waves. 
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